SISTEM KOMUNIKASI

Program Studi D3 Teknik Telekomunikasi FAKULTAS ILMU TERAPAN

Letak Channel Code

What are Linear Block Codes?

Linear Block Codes

- Information sequence is segmented into message blocks of fixed length.
- Each k-bit information message is encoded into an n-bit codeword ($n>k$)

What are Linear Block Codes?

Linear Block Codes

- Modulo-2 sum of any two codewords is also a codeword
- Each codeword \mathbf{v} that belongs to a block code \mathbf{C} is a linear combination of k linearly independent codewords in C, i.e.,

$$
\begin{aligned}
& U=m_{0} \cdot g_{0}+m_{1} \cdot g_{1}+\ldots+m_{k-1} \cdot g_{k-1} \\
& g_{i}=\left[g_{i 0} g_{i 1} \ldots \cdot g_{i, n-1}\right]
\end{aligned}
$$

Some definitions

Binary field:

The set $\{0,1\}$, under modulo 2 binary addition and multiplication forms a field.

Addition	Multiplication
$0 \oplus 0=0$	$0 \cdot 0=0$
$0 \oplus 1=1$	$0 \cdot 1=0$
$1 \oplus 0=1$	$1 \cdot 0=0$
$1 \oplus 1=0$	$1 \cdot 1=1$

\square Binary field is also called Galois field, GF(2).

Linear block codes - cont'd

- The information bit stream is chopped into blocks of k bits.
- Each block is encoded to a larger block of n bits.
- The coded bits are modulated and sent over channel.
- The reverse procedure is done at the receiver.

$n-k \quad$ Redundant bits

$$
R_{c}=\frac{k}{n} \text { Code rate }
$$

Linear block codes - cont'd

- The Hamming weight of vector \mathbf{U}, denoted by $w(\mathbf{U})$, is the number of non-zero elements in U.
- The Hamming distance between two vectors \mathbf{U} and \mathbf{V}, is the number of elements in which they differ.

$$
d(\mathbf{U}, \mathbf{V})=w(\mathbf{U} \oplus \mathbf{V})
$$

- The minimum distance of a block code is

$$
d_{\min }=\min _{i \neq j} d\left(\mathbf{U}_{i}, \mathbf{U}_{j}\right)=\min _{i} w\left(\mathbf{U}_{i}\right)
$$

Linear block codes - cont'd

- Error detection capability is given by

$$
e=d_{\min }-1
$$

- Error correcting-capability \mathbf{t} of a code, which is defined as the maximum number of guaranteed correctable errors per codeword, is

$$
t=\left\lfloor\frac{d_{\min }-1}{2}\right\rfloor
$$

Linear block codes - cont'd

- Encoding in (n,k) block code

\square The rows of G , are linearly independent.

Linear block codes - cont'd

Example: Block code (n,k)=(6,3)

$$
\mathbf{G}=\left[\begin{array}{l}
\boldsymbol{g}_{\mathbf{1}} \\
\boldsymbol{g}_{\mathbf{2}} \\
\boldsymbol{g}_{\mathbf{3}}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{V}_{\mathbf{1}} \\
\begin{array}{l}
\text { Message } \\
\text { vector }(m)
\end{array} \\
\mathbf{V}_{\mathbf{2}} \\
\mathbf{V}_{\mathbf{3}}
\end{array}\right]=\left[\begin{array}{ccc}
\mathbf{1 1 0 1 0 0} \\
\mathbf{0 1 1 0 0} & 000000 \\
\mathbf{0 1 0 1 0} \\
\mathbf{1 0 1 0 0 1}
\end{array}\right] \begin{array}{ll}
\text { Codeword }(U) \\
010 & 011010 \\
110 & 101110 \\
001 & 101001 \\
& 101 \\
011101 \\
011 & 110011 \\
111 & 000111
\end{array}
$$

Example: Block code $(\mathbf{n}, \mathbf{k})=(7,4)$

$\mathbf{G}=\left[\begin{array}{l}\mathbf{g}_{0} \\ \mathbf{g}_{1} \\ \mathbf{g}_{2} \\ \mathbf{g}_{3}\end{array}\right]=\left[\begin{array}{lllllll}1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1\end{array}\right]$

Message (\mathbf{m})	Codeword
0000	0000000
0001	$\mathbf{1 0 1 0 0 0 1}$
0	\mathbf{g}_{3}
0010	$\mathbf{1 1 1 0 0 1 0}$
\mathbf{g}_{2}	
0011	0100011
0100	$\mathbf{0 1 1 0 1 0 0}$
0101	1100101
$\mathbf{0 1 1 0}$	\mathbf{g}
0111	000110
1000	$\mathbf{1 1 0 1 0 0 0}$
1001	0111001
1010	0011010
1011	1001011
1100	1011100
1101	0001101
1110	0101110
1111	1111111

Example

$\left.\mathbf{G}=\left[\begin{array}{l}\mathbf{g}_{0} \\ \mathbf{g}_{1} \\ \mathbf{g}_{2} \\ \mathbf{g}_{3}\end{array}\right]=\left[\begin{array}{lllllll}1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1\end{array}\right]\right\} \begin{aligned} & \text { Linearly } \\ & \text { Dependent }\end{aligned}$

Tugas, Dikumpulkan!

Consider a (7,4) code whose generator matrix is

$$
\mathbf{G}=\left(\begin{array}{ccccccc}
1 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

1. Find all the codewords of the code.
2. What is the error-correcting capability of the code?

3 . What is the error-detecting capability of the code?

TERIMA KASIH

