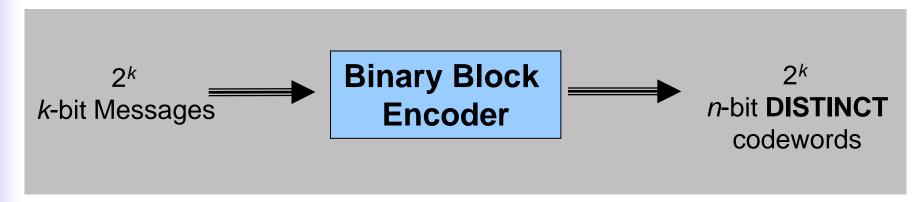

SISTEM KOMUNIKASI

LINEAR BLOCK CODE

Program Studi D3 Teknik Telekomunikasi FAKULTAS ILMU TERAPAN


Letak Channel Code

What are Linear Block Codes?

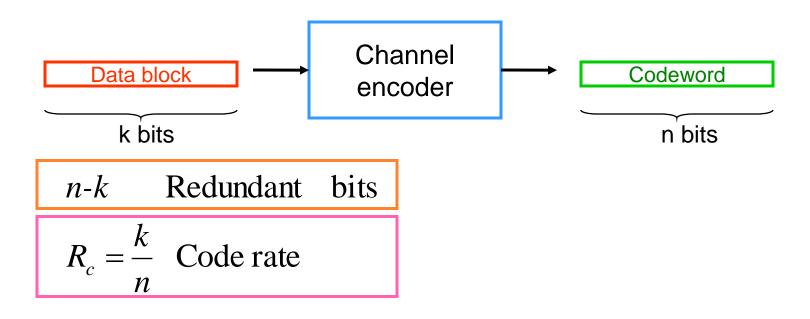
Linear Block Codes

- Information sequence is segmented into message blocks of *fixed length*.
- Each k-bit information message is encoded into an n-bit codeword (n>k)

Linear Block Codes

- Modulo-2 sum of any two codewords is also a codeword
- Each codeword v that belongs to a block code C is a linear combination of k linearly independent codewords in C, i.e.,

$$U=m_0.g_0+m_1.g_1+...+m_{k-1}.g_{k-1}$$
$$g_i=[g_{i0} \ g_{i1} \ ... \ g_{i,n-1}]$$


Some definitions

Binary field :

The set {0,1}, under modulo 2 binary addition and multiplication forms a field.

	Addition	Multiplication	
	$0 \oplus 0 = 0$	$0 \cdot 0 = 0$	
	$0 \oplus 1 = 1$	$0 \cdot 1 = 0$	
	$1 \oplus 0 = 1$	$1 \cdot 0 = 0$	
	$1 \oplus 1 = 0$	$1 \cdot 1 = 1$	
Bina	ry field is als	o called Galoi	s field, GF(2).

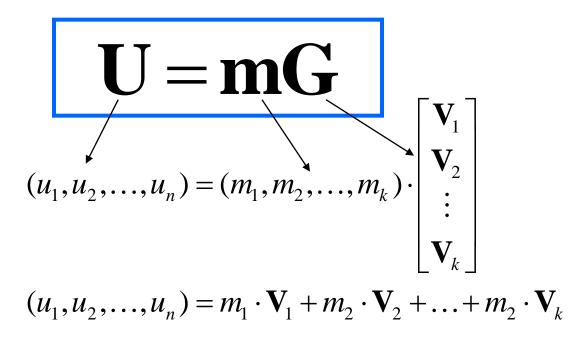
- The information bit stream is chopped into blocks of k bits.
- Each block is encoded to a larger block of n bits.
- The coded bits are modulated and sent over channel.
- The reverse procedure is done at the receiver.

- The Hamming weight of vector U, denoted by w(U), is the number of non-zero elements in U.
- The Hamming distance between two vectors U and V, is the number of elements in which they differ.

$$d(\mathbf{U},\mathbf{V}) = w(\mathbf{U} \oplus \mathbf{V})$$

The minimum distance of a block code is

$$d_{\min} = \min_{i \neq j} d(\mathbf{U}_i, \mathbf{U}_j) = \min_i w(\mathbf{U}_i)$$


Error detection capability is given by

$$e = d_{\min} - 1$$

Error correcting-capability t of a code, which is defined as the maximum number of guaranteed correctable errors per codeword, is

$$t = \left\lfloor \frac{d_{\min} - 1}{2} \right\rfloor$$

Encoding in (n,k) block code

The rows of G, are linearly independent.

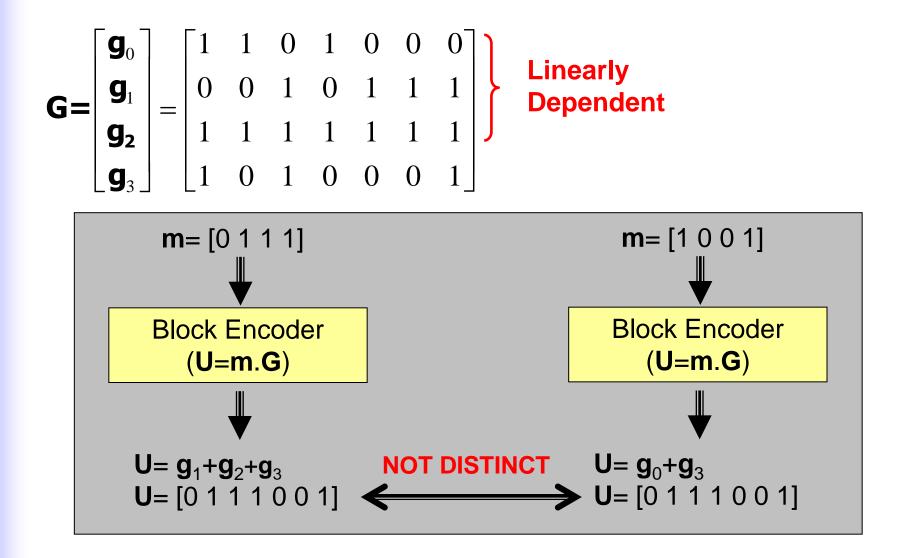
Example: Block code (n,k)=(6,3)

_	Message vector (m)	Codeword (U)
	000	000000
$\begin{bmatrix} g_1 \end{bmatrix} \begin{bmatrix} \mathbf{V}_1 \end{bmatrix} \begin{bmatrix} 110100 \end{bmatrix}$	100	110100
$\mathbf{G} = \begin{bmatrix} g_1 \\ g_2 \end{bmatrix} = \begin{bmatrix} \mathbf{V}_1 \\ \mathbf{V}_2 \end{bmatrix} = \begin{bmatrix} 110100 \\ 011010 \\ 10100 \end{bmatrix}$	010	011010
$\begin{bmatrix} g_3 \end{bmatrix} \begin{bmatrix} V_3 \end{bmatrix} \begin{bmatrix} 101001 \end{bmatrix}$	110	101110
	001	101001
	101	011101
	011	110011
	111	000111

Example: Block code (n,k)=(7,4)

 \mathbf{g}_0

 \mathbf{g}_1


g₂

g₃

G=

	Message (m)	Codeword	
	0000	0000000	
$\begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \end{bmatrix}$	0001	1010001	g ₃
0 1 1 0 1 0 0	0010	1110010	g ₂
$\begin{vmatrix} = \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \end{vmatrix}$	0011	0100011	
	0100	0110100	g ₁
	0101	1100101	
m [0 1 1 0]	0110	1000110	
m = [0 1 1 0]	0111	0010111	
	1000	1101000	\mathbf{g}_0
Linear Block	1001	0111001	
Encoder (U=m.G)	1010	0011010	
	1011	1001011	
	1100	1011100	
$\mathbf{U}=\mathbf{g}_1+\mathbf{g}_2$	1101	0001101	
U = [1 0 0 0 1 1 0]	1110	0101110	
	1111	1111111	

Example

Consider a (7,4) code whose generator matrix is

- 1. Find all the codewords of the code.
- 2. What is the error-correcting capability of the code?
- 3. What is the error-detecting capability of the code?

TERIMA KASIH